
Package: deBif (via r-universe)
August 26, 2024

Type Package

Title Bifurcation Analysis of Ordinary Differential Equation Systems

Version 0.1.9

Description Shiny application that performs bifurcation and phaseplane
analysis of systems of ordinary differential equations. The
package allows for computation of equilibrium curves as a
function of a single free parameter, detection of
transcritical, saddle-node and hopf bifurcation points along
these curves, and computation of curves representing these
transcritical, saddle-node and hopf bifurcation points as a
function of two free parameters. The shiny-based GUI allows
visualization of the results in both 2D- and 3D-plots. The
implemented methods for solution localisation and curve
continuation are based on the book ``Elements of applied
bifurcation theory'' (Kuznetsov, Y. A., 1995; ISBN:
0-387-94418-4).

License GPL-3

Encoding UTF-8

NeedsCompilation yes

Imports graphics, deSolve (>= 1.3), rootSolve (>= 1.8), rstudioapi (>=
0.13), shiny (>= 1.7), shinyjs (>= 2.1), shinydashboard (>=
0.7), shinydashboardPlus (>= 2.0)

Suggests knitr, R.rsp, rmarkdown

RoxygenNote 7.2.3

VignetteBuilder R.rsp

Depends R (>= 4.2)

Repository https://amderoos.r-universe.dev

RemoteUrl https://github.com/amderoos/debif

RemoteRef HEAD

RemoteSha a4e17d6278ec385ab87c0ed3efd0ff3f8591065c

1

2 bifurcation

Contents
bifurcation . 2
deBifExample . 4
deBifHelp . 5
deBifReset . 5
phaseplane . 6

Index 8

bifurcation Phaseplane analysis of a system of ODEs

Description

bifurcation

Usage

bifurcation(model, state, parms, resume = TRUE, ...)

Arguments

model (function, required)

An R-function that computes the values of the derivatives in the ODE system
(the model definition) at time t. The model must be defined as: model <- func-
tion(t, state, parms), where t is the current time point in the integration, state is
the current value of the variables in the ODE #’ system and parms is a vector or
list of parameters. The return value of func should be a list, whose first and sin-
gle element is a vector containing the derivatives of y with respect to time. The
derivatives must be specified in the same order as the state variables state. The
vector state and parms should both have name attributes for all their elements

state (numeric vector, required)

The initial (state) values for the ODE system. This vector should have name
attributes for all its elements

parms (numeric vector, required)

The values of the parameters in the ODE system. This vector should have name
attributes for all its elements

resume (boolean, optional)

bifurcation 3

If TRUE the program will try to load the curves computed during the last session
from the global variable ’<model>BifCurves’ and try to restore the numerical
and plot settings by importing them from the global variable ’<model>BifSettings’,
where the substring ’<model>’ is the name of the function describing the dynam-
ics, which is passed as first argument to ’bifurcation()’. The program saves the
curves computed during a session and the numerical and plot settings of this last
session in these global variables ’<model>BifCurves’ and ’<model>BifSettings’.

... (optional arguments)

Additional arguments that can be included at the command line to tweak graph-
ical default values used by the application. Valid arguments are:

lwd: Line width (default 3)

cex: Base font size (default 1.2)

tcl.len: Length of axes ticks (default 0.03)

bifsym: Symbol used to mark a bifurcation point in an equilibrium curve (de-
fault: 8)

biflblpos: Location of label of a bifurcation point. Values of 1, 2, 3 and 4,
respectively, indicate positions below, to the left of, above and to the right of the
symbol marking the bifurcation point (default: 3)

unstablelty: Line style of curve section representing unstable equilibrium
points (default: 3 (refers to dotted lines))

saveplotas: Possible values: "pdf" or "png" (default). Save plot to PDF or
PNG file.

Details

bifurcation(model, state, parms, resume = TRUE, ...)

Value

None.

4 deBifExample

Examples

if(interactive()){
The initial state of the system has to be specified as a named vector of state values.
state <- c(R=1, N=0.01)

Parameters has to be specified as a named vector of parameters.
parms <- c(r=1, K=1, a=1, c=1, delta=0.5)

The model has to be specified as a function that returns
the derivatives as a list.
model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N
dN <- c*a*R*N - delta*N

The order of the derivatives in the returned list has to be
identical to the order of the state variables contained in
the argument "state"
return(list(c(dR, dN)))

})
}

bifurcation(model, state, parms)
}

deBifExample Examples of phaseplane analysis of a system of ODEs

Description

deBifExample

Usage

deBifExample(example)

Arguments

example (string, optional)

Name of the example. If not provided a list of examples is returned

Details

deBifExample(example)

Function runs one of the examples provided with the deBif package

deBifHelp 5

Value

None.

deBifHelp Opens the deBif manual

Description

deBifHelp opens the manual of the the deBif package in html format.

Usage

deBifHelp()

Value

None.

Examples

if(interactive()){
deBifHelp()
}

deBifReset Reloads the deBif package

Description

deBifReset unloads and reloads the deBif package.

Usage

deBifReset()

Value

None.

Examples

if(interactive()){
deBifReset()
}

6 phaseplane

phaseplane Phaseplane analysis of a system of ODEs

Description

phaseplane

Usage

phaseplane(model, state, parms, resume = TRUE, ...)

Arguments

model (function, required)

An R-function that computes the values of the derivatives in the ODE system
(the model definition) at time t. The model must be defined as: model <- func-
tion(t, state, parms), where t is the current time point in the integration, state is
the current value of the variables in the ODE #’ system and parms is a vector or
list of parameters. The return value of func should be a list, whose first and sin-
gle element is a vector containing the derivatives of y with respect to time. The
derivatives must be specified in the same order as the state variables state. The
vector state and parms should both have name attributes for all their elements

state (numeric vector, required)

The initial (state) values for the ODE system. This vector should have name
attributes for all its elements

parms (numeric vector, required)

The values of the parameters in the ODE system. This vector should have name
attributes for all its elements

resume (boolean, optional)

If TRUE the program will try to load the curves computed during the last session
from the global variable ’<model>PhaseCurves’ and try to restore the numerical
and plot settings by importing them from the global variable ’<model>PhaseSettings’,
where the substring ’<model>’ is the name of the function describing the dynam-
ics, which is passed as first argument to ’bifurcation()’. The program saves the
curves computed during a session and the numerical and plot settings of this last
session in these global variables ’<model>PhaseCurves’ and ’<model>PhaseSettings’.

... (optional arguments)

phaseplane 7

Additional arguments that can be included at the command line to tweak graph-
ical default values used by the application. Valid arguments are:

lwd: Line width (default 2)

cex: Base font size (default 1.2)

tcl.len: Length of axes ticks (default 0.03)

saveplotas: Possible values: "pdf" or "png" (default). Save plot to PDF or
PNG file.

Details

phaseplane(model, state, parms, resume = TRUE, ...)

Value

None.

Examples

if(interactive()){
The initial state of the system has to be specified as a named vector of state values.
state <- c(R=1, N=0.01)

Parameters has to be specified as a named vector of parameters.
parms <- c(r=1, K=1, a=1, c=1, delta=0.5)

The model has to be specified as a function that returns
the derivatives as a list.
model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N
dN <- c*a*R*N - delta*N

The order of the derivatives in the returned list has to be
identical to the order of the state variables contained in
the argument "state"
return(list(c(dR, dN)))

})
}

phaseplane(model, state, parms)
}

Index

bifurcation, 2

deBifExample, 4
deBifHelp, 5
deBifReset, 5

phaseplane, 6

8

	bifurcation
	deBifExample
	deBifHelp
	deBifReset
	phaseplane
	Index

